Kontrollera mäskens pH-värde – Del I: Alkalinitet och rest-alkalinitet

Inledning

Det sägs att ett korrekt pH-värde i mäsken är viktigare för ölets slutresultat än vattnets mineralsammansättning i sig, och så som jag snuddade vid i mitt senaste inlägg tillkom vissa utmaningar vad gäller mäsk-pH vid min senaste lagerbryggning. Eller egentligen tydliggjordes viss redan befintlig problematik. Jag har inte kunnat förutsäga var mitt mäsk-pH ska landa, utan använt Palmers kalkylblad och mer eller mindre ställt min tilltro till detta när jag har justerat vattnet efter rekommenderad profil. För att sänka min rest-alkanitet (RA) ytterligare, enär det rekommenderade mineralinnehållet av framförallt kalcium var förhållandevis lågt vid min senaste bryggning, tillsatte jag även 6 ml mjölksyra. Mitt RA landade i det lägre spannet av den rekommenderade skalan, men jag hade likväl ingen aning om var mitt mäsk-pH skulle visa sig vara. Lyckligtvis fungerade det, men det var ändå en chansning. Chansningar vill jag som sagt undvika och jag ställde mig frågan ifall det är möjligt att förutsägbart justera sitt mäsk-pH med hjälp av mjölksyra.

Ölbryggning brukar jämföras med matlagning och det finns självfallet vissa likheter. Jämförelsen haltar emellertid i avseendet tid och tidsaspekt. Vid matlagning kan avsmakning ske under tiden och inverkan av kryddor och annat kan bedömas omedelbart. Det är svårare vid ölbryggning, som därvid behöver jäsa och eventuellt lagras under vilket fördröjer bedömningen med åtminstone 1-2 veckor. Det tar också ungefär en arbetsdag att bara brygga en omgång, i motsats till en köttgryta som kan vara klar på ett par timmar. Detta är den huvudsakliga anledning till att jag vill undvika chansningar i min bryggeriverksamhet.

Med den tidigare nämnda frågan som utgångspunkt fanns en hel del att reda ut. Jag föreställde mig att hitta en enkel formel där en viss rest-alkalinitet resulterade i ett visst pH-värde och min insats kunde begränsats till en uträkning och en enkel test av giltigheten. Frågan var dock betydligt mer komplex och det kändes som att pandoras ask hade öppnats. Gemensamt för samtliga delar är att jag av praktiska skäl har valt att strunta i källhänvisningar i den löpande texten, det är ingen uppsats jag skriver, men för den intresserade så är informationen huvudsakligen hämtad från J. Palmer, How To Brew, kap. 21 och J. Palmer & C. Kaminski, Water, kap. 4-5. Sekundärkällor har jag, i ärlighetens namn, inte heller kontrollerat särskilt.

Till följd av frågans komplexitet har jag haft vissa svårigheter med att disponera framställningen, men hoppas att jag har lyckats väva ihop det, att den är någorlunda logisk och den röda tråden går att följa utan allt för stor ansträngning. I denna inledande del behandlas vattnets buffertförmåga i form av alkalinitet och rest-alkalinitet samt dess realtion till mäskens pH-värde.

Alkalinitet och rest-alkalinitet

Av stor betydelse i sammanhanget vatten och mäsk-pH är begreppet alkalinitet. Alkalinitet är ett mått på vattnets buffertkapacitet, dess förmåga att stå att stå emot syra. Det anges i mängden syra som krävs för att vattnet ska landa på pH 4.3. I Sverige angivet som vätekarbonat eller bikarbonat (mg HCO3 / liter), medan det i USA och amerikansk litteratur istället anges som kalciumkarbonat (CaCO3). Oavsett hur det anges är innebörden densamma och en omvandling är lätt. Alkaliniteten anger hur många milliekvivalenter syra per liter (mekv/l), eller antalet millimol laddningar, som behövs för att nå pH 4.3. För omvandling behöver molmassan hos den aktuella jonen, eller egentligen jonens ekvivalentvikt vara känd, vätekarbonat har en vikt på 61,016 g/mol och kalciumkarbonat en på 50.

En ny term lanserades av Kolbach under 1950-talet, nämligen Residual alkanity, RA eller rest-alkalinitet. RA står i tydligare relation till mäskens pH och är den kvarvarande alkaliniteten sedan vattnets kalcium och magnesium har reagerat med maltens fosfatjoner och därigenom neutraliserat viss del av vattnets ursprungliga alkalintet. För att neutralisera en ekvivalent alkalinitet krävs 3,5 ekvivalenter kalcium eller 7 av magnesium. Formeln för RA nedan.

RA mekv/l = Total alkalinitet mekv/l – ((Ca mekv/l / 3,5)+(Mg mekv/l / 7))

Eftersom innehållet anges i mg/l eller ppm i vattenrapporten behöver värdena räknas om. Det görs genom att värdet divideras med ekvivalentvikten. Denna är 20 för kalcium och 12,1 för magnesium. Inför denna undersökning begärde jag ut en ny vattenrapport med färska siffror nedan.

Vattenrapport 2020-03-10
Alkalinitet 100 mg HCO3/l => 100/61= 1,639 mekv/l
Kalcium 30 mg/l => 30/20= 1,5 mekv/l
Magnesium 1,5 mg/l => 1,5/12,1= 0,12 mekv/ l
pH 8.3

Det ger mig ett RA-värde, vid obehandlat vatten, av 1,19 mekv/l, 73 mg HCO3/l eller 60 mg CaCO3/l. Klart så långt är följaktligen att vattnets påverkan av mäskens pH-värde är dess alkalinitet, kalcium- och magnesiuminnehåll, samt dess eget pH-värde i viss utsträckning.

I grafen nedan visualiseras hur stor påverkan på mäskens pH en mekv/l RA har enligt Kolbachs undersökningar. Mycket information saknas emellertid och det går inte att förutsäga något kring var en mäsk, med en viss maltnota kommer att landa. Vad som visas är endast hur pH-värdet kan justeras, från maltens bas-pH. Bas-pH:t nås genom mäskning med destillerat vatten, vilket sällan eller aldrig görs utanför laboratoriemiljö. I experimentet har 5 l vatten använts per kg malt och vörten låg på SG 1.048.

Mäsk-pH

En brist i sambandet mellan vattnets RA och mäsk-pH är således att uträkningen inte tar hänsyn till alla faktorer som kan komma att ha en påverkan på slutresultatet. Mäskvetenskap är som bekant en kombination av vatten- och maltvetenskap. Det är egen-pH och buffertkapacitet hos de båda som är styrande för mäskens pH-värde. Maltens egen-pH, dess alkalinitet respektive aciditet, står i viss relation till färgen av densamma. Även om sambandet är skenbart, och det egentligen är mältningsprocessen som styr, så är tumregeln att desto mörkare malt desto mer aciditet och lägre egen-pH har den.

Det finns en formel enligt vilken ölets ideala färg kan kalkyleras, egentligen uppskattas, baserat på vattnet som används.
Optimal färg i SRM är lika med 7 * RA (mekv/l) + 5,2. Omvandling till EBC görs därvid med faktorn 1,97.
Tydligt är att ekvationen haltar en del, särskilt vid ett negativt RA, eventuellt ersätts det i sådant fall med värdet 0.

BYO: Understanding Residual Alkalinity & pH

Mäskens pH kommer att landa på den punkt där alkalinitet och aciditet hos malt och vatten möts och tar ut varandra. Buffertkapaciteten påverkas bland annat av mängder, det vill säga ration mellan malt och vatten, men också maltens krossning. Maltens buffertkapacitet ökar exempelvis av en tjockare mäsk eller en finare krossning. Se skillnaden mellan olika koncentrationer nedan, från 2 liter vatten per kilo malt till 5. Enligt Palmers tester kan 0.1 pH justeras enligt formeln 200/Rv, där Rv är antal liter vatten per kilo malt och resultat nås i enheten RA ppm CaCO3. Även här saknas följaktligen en del faktorer för fullständighet.

I del II av den serie går jag närmare in på hur chansningar kan undvikas och mäskens pH-värde kan förutses eller beräknas på förhand.

En reaktion till “Kontrollera mäskens pH-värde – Del I: Alkalinitet och rest-alkalinitet

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut /  Ändra )

Google-foto

Du kommenterar med ditt Google-konto. Logga ut /  Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut /  Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut /  Ändra )

Ansluter till %s