Kontrollera mäskens pH-värde – Del III: Vattenjustering

Justera vattnet

Valet av föll på pH 5.2 just eftersom det ligger lägst i skalan av de rekommenderade nivåerna för ljusa öl, som jag i huvudsak brygger. Dessutom är det mest optimalt för utbyte och förjäsbarhet. Jag var intresserad av att se vad som krävdes och ifall det överhuvudtaget var möjligt att gå till en sådan ”extrem”. Dessutom ligger fortfarande värdet 5.2 kvar och i bakhuvudet sedan början av min hembryggarkarriär då jag använde en slags bufferlösning som sades få mäsken att landa på pH 5.2 oavsett utgångsläge.

Ifall min mäsk ska kunna landa på pH 5.2, eller överhuvudtaget på en rimlig nivå, givet maltnota och öltyp enligt tidigare inlägg behöver justeringar i vattnets sammansättning göras. För att landa på pH 5.2 hade mitt vattens Z RA behövt vara -5,3 mekv/l och RA måste följaktligen minskas med 6,4 mekv/l enligt tidigare uträkningar. Detta kan göras genom att förändra vattnets sammansättning i form av saltbehandling, men en sänkning kan också åstadkommas genom att syra tillsätts i vattnet eller mäsken. Ett alternativ som endast sänker vattnets RA utan att påverka vattnet i övrigt. En liten påminnelse om den aktuella vattenprofile, kompletterad med sulfat- och kloridinnehåll nedan.

Vattenprofil 2020-03-10
Alkalinitet 100 mg HCO3/l => 100/61= 1,639 mekv/l
Kalcium 30 mg/l => 30/20= 1,5 mekv/l
Magnesium 1,5 mg/l => 1,5/12,1= 0,12 mekv/ l
Sulfat 16 mg/l
Klorid 27 mg/l
pH 8.3

Syra och normalitetslösning

Tillsättning av syra, eller för den delen bas, ändrar som sagt vattnets buffertkapacitet utan någon övrig påverkan. Oklart är emellertid i vilken utsträckning och ifall man, liksom jag, vill undvika chansningar finns en bra metod att tillgå. Man kan blanda ihop en normalitetslösning (”1 N Solution”) av den aktuella substansen, där en liter av denna är motsvarar 1 ekvivalent. Det innebär vidare att 1 ml av lösningen är detsamma som 1 mekv/l. En sådan lösning är förhållandevis lätt att tillreda och görs enligt följande. I mitt exempel använder jag mjölksyra med 80% koncentration, vilket är den styrka som vanligen säljs i Sverige.

80 är en viktprocent, i vilken syror alltid anges. För att tillreda lösningen behöver molmassan, vikten för den aktuella syran var känd. Mjölksyra (C3H4O(OH)2) har därvid en molmassa på 90,078 g/mol och densiteten ligger på 1,21 g/cm³. Inledningsvis beräknas hur mycket en liter lösning (100%) väger, och det görs genom att densiteten multipliceras med 1000. En liter ren mjölksyra väger således 1210 g. I nästa steg multipliceras denna vikt med aktuell viktprocent och hur mycket löst syra som finns i en liter blir känt: 0,8 * 1210 = 968 g per liter 80-procentig mjölksyra. Därefter avgörs lösningens molaritet (”molarity”) genom att lösningsvikten (968 g) divideras med molmassan (90,078) och en molaritet på 10,746 nås, vilket också är lösningens normalitetsvärde (10,746 N). I det sista steget avgörs hur många milliliter av en sådan lösning som behövs för att istället skapa en 1 N lösning. Det görs enkelt genom att en liter, i milliliter, divideras med lösningens normalitetsvärde. Följaktligen behövs 1000 / 10,746 = ~93 ml mjölksyra av aktuell koncentration för att skapa 1 liter normalitetslösning.

Använd erforderlig skyddsutrustning vid hantering av starka syror och tänk på att alltid tillsätta syra i vatten och inte tvärtom, ”Do what you oughta, add acids to water (watah)”. Börja därför med att mäta eller väga upp 907 ml (1000-97) vatten och tillsätt därefter syran däri. 907 ml vatten väger cirka 905 g, eftersom densiteten hos vatten i rumstemperatur 998 kg/m³. Hela förfarandet dokumenterat i bilder nedan.

1 ml av normalitetslösning ovan minskar som sagt alkaliniteten med 1 mekv/l utan att påverka vattnets egenskaper i övrigt. En del syror, exempelvis mjölksyra som här är aktuellt, kan dock bidra med smak i högre koncentrationer. Upp till 400 ppm, dvs 400 mg/l, ska emellertid inte ha någon sådan inverkan. 1 mekv/l mjölksyra, 1 ml av normalitetslösningen ökar innehållet med 89 ppm, vilket således innebär att max ~4,5 ml/l (400/89) av lösningen bör användas och alkaliniteten max sänkas med 4,5 mekv/l denna väg.

Till min minimäsk i del II tog jag ut en liten del av normalitetslösningen, 10 ml närmare bestämt som jag löste i 90 ml vatten. Det gör att förhållandet milliliter-deciliter kan användas istället för liter enligt tidigare.

Salter

Utan att påverka vattnets alkalinitet, men med en sänkning av RA och därmed pH-värde kan vattnets sammansättning också justeras med hjälp av salter. Härigenom skapas en helt ny vattenprofil och det finns vissa rekommenderade nivåer man bör försöka rätta sig någorlunda efter. Vad som kan bli problematiskt är att de salter som finns att tillgå i regel påverkar fler än den parameter man primärt önskar justera.

Jag justerar alltid nedåt, och i min arsenal har jag kalciumsulfat (CaSO4 x 2 H2O), magnesiumsulfat (MgSO4 x 7 H2O) och kalciumklorid (CaCl2). Magnesium och kalcium har som sagt en direkt effekt på vattnets RA och därmed mäskens pH-värde, medan nivåerna av sulfat och klorid påverkas indirekt. En påverkan som dock måste tas i beaktande och ser ut som följer.

Eftersom påverkan anges i 1 g / l får denna divideras med mängden vatten som används, i förevarande fall 36 l. 1 g gram kalciumsulfat ökar följaktligen mitt vattens kalciumnivå med ~6,5 ppm och sulfat med ~15,5 ppm. Generellt rekommenderade nivåer finns listade härunder, men de varierar emellertid något med öltypen.

Kalcium 50-150 ppm
Magnesium 0-40 ppm
Klorid 50-150 ppm
Sulfat 50-150 ppm och 150-400 ppm för IPA:or och humledominerade öl.

Dessutom behöver förhållandet mellan sulfat och klorid tas i beaktande, då denna påverkar förhållandet mellan maltighet och humle i det färdiga ölet. Där sulfaten verkar till humlens fördel och kloriden till maltens. Den rekommenderade nivån är 5:1 – 0,5:1, men därvid upp till 9:1 för IPA:s.

För en sänkning av pH och RA är tillsättning av kalcium att föredra i första hand eftersom förhållandet till RA endast är 3,5:1 här i jämförelse med magnesiumets 7:1. Mitt ursprungliga vatten innehåller 30 ppm kalcium och det finns utrymme att gå upp till 150 ppm. För att komma dit krävs 18,5 g kalciumsulfat eller 15,9 g kalciumklorid till mina 36 l vatten, se nedan för bidragets uträkning.

(Maxnivå – befintlig nivå) / ((Bidrag i ppm g/l)/Volym vatten)
(150-30) / (232,8/36) (Kalciumsulfat)

Härvid tillkommer emellertid bieffekter i form av sulfat eller kloridtillägg som behöver tas i beaktande. Tillsättningen av 18,5 g kalciumsulfat ökar vattnets sulfatinnehåll med 286,6 ppm och 15,9 kalciumklorid får nivån av klorid att öka med 213 ppm enligt uträkningen härunder.

(Saltvikt * Bidrag i ppm g/l) / Volym vatten
(18,5 * 557,7) / 36 (Sulfataddition)

Det skulle således bli allt för höga nivåer till en vanlig lager och lämpligare är kanske att kasta om siffrorna så att maxnivån för sulfat respektive klorid får bli styrande istället.

((Maxnivå ppm – Befintlig nivå ppm) * Volym vatten) / Bidrag i ppm g/l
(150-16 * 36) / 557,7 (Kalciumsulfat)

Uträkningen leder till att max 7,4 g kalciumsulfat eller 9,1 g kalciumklorid kan tillsättas. Om 9,1 g kalciumklorid tillsätts ökar således kloridnivån till 150 ppm och kalcium till 90 ppm. Förhållandet sulfat-klorid går emellertid ner till 0,1:1, vilket är allt för lågt. Lyckligtvis kan det rättas till genom att magnesiumsulfat tillsätts, vilket dessutom resulterar i en ytterligare sänkning av vattnets RA. Om vi siktar på att nå 150 ppm sulfat, vilket är den rekommenderade maxnivån för normala, balanserade öl, landar ration på 1:1, vilket skulle vara fullt acceptabelt. Enligt uträkningen ovan nås 150 ppm sulfat när 12,4 g magnesiumsulfat tillsätts och därvid ökar även magnesiumnivån till 35,5 ppm.

När salterna har ovan tillsats ser min vattenprofil ut enligt följande:
Kalcium 90 ppm
Magnesium 35,5 ppm
Sulfat 150 ppm
Klorid 150 ppm
Alkalinitet 100 mg HCO3 / liter eller 82 ppm CaCO3
Det ger mig ett nytt Z RA (vid pH 5.2) på -0,15 mekv/l (1,555 – (((90/20)/3,5) + ((35,5/12,1)/7))).

Maximal justering av vattnet

För att nå pH 5.2, som är målet sen tidigare, behöver mitt vattens Z RA som sagt sänkas till -5,3 mekv/l och genom att tillsätta kalciumklorid och magnesiumsulfat landar nivån nu på -0,15 mekv/l. I detta läge kan jag tillsätta maximalt 4,5 ml mjölksyrelösning per liter innan smaken slår igenom och når därvid ett värde om -4,65 mekv/l och kommer således ändå inte att nå pH 5.2. Alternativen som återstår är att byta ut malten till en med högre aciditet, exempelvis syramalt, öka andelen karamellmalt eller använda mera vatten. Jag skulle också kunna börja använda ett annat vatten, eller ett såkallat RO-vatten. Att förändra maltsammansättningen är jag emellertid inte intresserad av i nuläget och att öka mängden vatten har jag inte plats till, varför jag får nöja mig med högre pH-värde. Lämpligare är istället 5.3 pH, vilket också är fullt acceptabelt och trots allt ligger nära det ursprungliga målet och i det önskvärda spannet.

Vid pH 5.3 är min Z alkalinitet 1,52 mekv/l eftersom delta C har minskat till 0,91. Efter mitt vatten har behandlats med kalciumklorid och magnesiumsulfat enligt ovan landar mitt Z RA på -3,38 mekv/l. Maltens bidrag har också förändrats med pH:t och ligger nu på 140 (150-10). 140 dividerat med volymen mäskvatten ger ett värde på 3,9 och innebär att vattnets alkalinitet behöver ligga på -3,9 istället. En differens på ~0,5 från mitt behandlade vattens profil. Det kan å andra sidan åtgärdas genom att 0,5 ml/l eller total 18 ml mjölksyrelösningen tillsätts och såvida uppgiften om maltens alkalinitet/aciditet är riktig bör mäsken landa på pH 5.3.

Rättelse: En miss i föregående styckes uträkning gav ett felaktigt resultat av Z RA, som istället skulle ha landat på -0,18 mekv/l efter att salterna hade tillsatts vattnet. Det innebär numera en differens om 3,7 mekv/l till mål-pH och fordrar således 3,7 ml 1 N-lösning per liter, eller totalt ~133 ml till 36 liter mäskvatten. Det innebär vidare att exeperimentet härunder kanske inte var fullt så misslyckat som jag misstänkte, åtminstone inte i det avseendet.

Jag tillredde en minimäsk i skala 1:100 även i detta fall för testa hypotesen. Problem med nedskalningen och precisionsbristen var än tydligare än exemplet i del II och några slutsatser kan knappast dras. Jag valde att behandla 1 liter vatten, som jag sedermera endast använde 360 ml utav. Härvid dividerade jag salttillsatserna ovan med 36 och trodde mig tillsätta 0,25 g kalciumklorid, 0,35 g magnesiumsulfat och 0,5 ml 1N-lösning. Vid nästa bryggtillfälle kommer jag istället att testa i full skala. pH-värdet landade på 5.5 vid 30 grader, vilket motsvarar 5.6 i rumstemperatur.

En reaktion till “Kontrollera mäskens pH-värde – Del III: Vattenjustering

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut /  Ändra )

Google-foto

Du kommenterar med ditt Google-konto. Logga ut /  Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut /  Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut /  Ändra )

Ansluter till %s